
An Open Pre-Compiler for Embedded SQL

Alan Walker
Mike Benzinger

January 5th, 2004

1 Problem Statement

Many commercial RDBMS have a pre-compiler that converts embedded SQL macros into inline
code for SQL calls.  Each vendor generates calls to their own proprietary, sometimes
undocumented, APIs.

We have a large system (>500 KLOC) with approximately 150 modules using embedded SQL.
Initially, we wanted to test it against a variety of databases, both commercial and open-source, as
part of a port to Linux.  Some of the databases we tested, including MySQL, don’t have a pre-
compiler for ESQL and rewriting these modules to the various database vendors APIs was not
feasible.

Initially, we searched the web and also posted a request to several database newsgroups, asking if
an open-source pre-compiler was available.  We received only a couple of responses, which
could be summarized as, “ I need one too, please let me know if you find one” .  So, this seemed
like a worthwhile project and something that we should make available to others.

The pre-compiler itself is an awk script and we have a different version for each target database,
scripts have been developed for MySQL, ODBC, Oracle and PostgreSQL.  

Note – our current precompiler has code specific to handling some quirks of
NonStop SQL/MP, most notably with date formats.  To use this code to port from
other database systems will require some minor changes.

1



2 Embedded SQL

2.1 Sample Program
The following sample program selects rows from a sample table and prints them.  Error handling
has not been included, for clarity.

#i ncl ude <st dl i b. h>
#i ncl ude <st di o. h>

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /
EXEC SQL I NCLUDE SQLCA;
shor t  sql code;

EXEC SQL BEGI N DECLARE SECTI ON;
i nt host _a;
doubl e host _b;
char host _c;
EXEC SQL END DECLARE SECTI ON;

EXEC SQL DECLARE csr 1 CURSOR FOR
SELECT a,  b,  c
  FROM t abl e1
 WHERE x = : host var 1;

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /
voi d mai n ( voi d)
{

host var 1 = 42;

EXEC SQL OPEN csr 1;
i f  ( sql code < 0)

exi t ( 0) ;

whi l e ( r c >= 0 && r c ! = 100)
{

EXEC SQL FETCH csr 1 I NTO :
host _a,  : host _b,  : host _c;

pr i nt f ( " Fet ch %d,  %l f ,  %s\ n" ,
host _a,  host _b,  host _c) ;

}

EXEC SQL CLOSE csr 1;
}

The pre-compiler approach is used in C/C++, COBOL & PLI, but this article discusses only
C/C++.  The resulting code is only compilable by a C++ compiler.  For each sample statement,
we show the code generated for MySQL and for ODBC.

2



2.2 Declaring Host Variables

EXEC SQL BEGI N DECLARE SECTI ON;
i nt host _a;
doubl e host _b;
char host _c;
EXEC SQL END DECLARE SECTI ON;

The database API usually requires the programmer to specify the type of the host variable, which
means the pre-compiler generally has to parse the declarations to understand the types.  Some
databases are limited to simple declarations for host variables, but some pre-compilers allow
structures, typedefs, etc in the declare section.  This was the case for us and we didn’ t want to
completely parse the C structures.

It occurred to us that we could generate C++ code from the initial C & ESQL code, then write a
light-weight wrapper around the database API that uses polymorphism to ensure the correct types
are used.  The C++ compiler then takes care of the hard parts.

The awk script simply takes the declare section and comments out the EXEC SQL macros, for
both MySQL and ODBC interfaces.

// EXEC SQL BEGI N DECLARE SECTI ON;
i nt host _a;
doubl e host _b;
char host _c;
// EXEC SQL END DECLARE SECTI ON;

2.3 Declaring a SELECT statement
The following sample shows a typical declaration of an SQL cursor for a select statement:

EXEC SQL DECLARE csr 1 CURSOR FOR
SELECT a,  b,  c
  FROM t abl e1
 WHERE x = : host var 1;

The pre-compiler creates a static variable with the text of the SQL statement, along with
additional items in the structure to know if the statement has been prepared or not.  For MySQL,
the following code is generated:

/ /  EXEC SQL DECLARE csr 1
st at i c e2mysql  csr 1 = {
    "  SELECT a, b, c FROM t abl e1 WHERE x = : host var 1"
  ,  NULL
  ,  0
} ;

3



For ODBC, it’ s almost identical.  One modification is to replace the host variables by “?”  instead
of the names:

/ /  EXEC SQL DECLARE csr 1
st at i c e2odbc csr 1 = {
    "  SELECT a, b, c FROM t abl e1 WHERE x = ?"
  ,  f al se
  ,  SQL_NULL_HSTMT
} ;

2.4 Executing the SELECT statement
The SELECT statement is executed when the program opens the ESQL cursor:

EXEC SQL OPEN csr 1;

The first step in executing the statement is to ensure that we’ re connected to the database.  For
some systems, with precompiled and bound SQL1, connections are implicit.

For MySQL, the following code is inserted:

/ /  EXEC SQL OPEN csr 1
st at i c i nt 16
open_csr 1( )
{
  t r y
  {
    i f  (  !  connect i onMade )
      SQLHel per Connect ( ) ;
    i f  (  csr 1. r sl t  ! = NULL )
      mysql _f r ee_r esul t ( csr 1. r sl t ) ;
    SQLBi ndPar mPol y( sql St mt ,  " : host var 1" ,  host var 1,  si zeof ( host var 1) ) ;
    i f  (  mysql _r eal _quer y( &mysql Connect i on,  sql St mt . c_st r ( ) ,
                           sql St mt . l engt h( ) )  )
      handl e_er r or ( " mysql _r eal _quer y" ) ;
    csr 1. r sl t   = mysql _st or e_r esul t ( &mysql Connect i on) ;
    i f  (  !  csr 1. r sl t  )
      i f  (  mysql _f i el d_count ( &mysql Connect i on)  ! = 0 )
        handl e_er r or ( " mysql _st or e_r esul t  -  no r esul t s" ) ;
    csr 1. r ow  = 0;
    sql code = SQL_SUCCESS;
  }
  cat ch( . . . )
  {
    sql code = SQL_ERROR;
  }
  r et ur n sql code;
}
/ / - - - - - - - - - - - - - -

1 Mainframe DB2 and Tandem SQL/MP are examples of implicit connections

4



For ODBC, if the statement has never been executed, we first prepare it and bind the host
variables used as parameters.  The following code shows the generated code:

/ /  EXEC SQL OPEN csr 1
st at i c i nt 16
open_csr 1( )
{
  t r y
  {
    i f  ( csr 1. st mt  == SQL_NULL_HSTMT)
    {
      i f  (  odbcConnect i on == 0 )
        SQLHel per Connect ( ) ;
      sql code = SQLAl l ocSt mt ( odbcConnect i on,  &csr 1. st mt ) ;
      i f  (  sql code == SQL_ERROR | |  sql code == SQL_I NVALI D_HANDLE )
        handl e_er r or ( odbcEnvi r onment ,  odbcConnect i on,  
                     csr 1. st mt ,  sql code,  " SQLAl l ocSt mt " ) ;
      sql code = SQLPr epar e( csr 1. st mt ,  ( SQLCHAR* )  
                           sql St at ement Text . c_st r ( ) ,  SQL_NTS) ;
      i f  (  sql code ! = SQL_SUCCESS && sql code ! = SQL_SUCCESS_WI TH_I NFO )
        handl e_er r or ( odbcEnvi r onment ,  odbcConnect i on,
                     csr 1. st mt ,  sql code,  " SQLPr epar e" ) ;
      SQLBi ndPar mPol y( csr 1. st mt ,  1, host var 1,  si zeof ( host var 1) ) ;
    }
    sql code = SQLExecut e( csr 1. st mt ) ;
    i f  (  sql code ! = SQL_SUCCESS && sql code ! = SQL_SUCCESS_WI TH_I NFO )
      handl e_er r or ( odbcEnvi r onment ,  odbcConnect i on,  
                   csr 1. st mt ,  sql code,  " SQLExecut e" ) ;
  }
  cat ch( . . . )
  {
  }
  r et ur n sql code;
}
/ / - - - - - - - - - - - - - -

5



2.5 Fetching Data
The FETCH statement specifies the target variables for the data:

EXEC SQL FETCH csr 1 I NTO : host _a,  : host _b,  : host _c;

When we fetch from the cursor, note that we don’t need the specify the types of the variables as
we’ve used polymorphism to let the C++ compiler determine the correct function to call:

/ /  EXEC SQL FETCH csr 1
st at i c i nt 16
f et ch_csr 1( )
{
  i f  (  !  csr 1. r sl t  )
    r et ur n SQL_ERROR;
  i f  (  csr 1. r ow >= mysql _num_r ows( csr 1. r sl t )  )
    r et ur n SQL_NO_DATA;
  MYSQL_ROW r ow = mysql _f et ch_r ow( csr 1. r sl t ) ;
  SQLBi ndCol Pol y( r ow[ 0] ,  host _a,  si zeof ( host _a) ) ;
  SQLBi ndCol Pol y( r ow[ 1] ,  host _b,  si zeof ( host _b) ) ;
  SQLBi ndCol Pol y( r ow[ 2] ,  host _c,  si zeof ( host _c) ) ;
  ++csr 1. r ow;
  r et ur n SQL_SUCCESS;
}
/ / - - - - - - - - - - - - - - -

For ODBC, similar code is generated:

/ /  EXEC SQL FETCH csr 1
st at i c i nt 16
f et ch_csr 1( )
{
  t r y
  {
    i f  (  !  csr 1. bi nd )
    {
      SQLBi ndCol Pol y( csr 1. st mt ,  1,  host _a,  si zeof ( host _a) ,  &dummy) ;
      SQLBi ndCol Pol y( csr 1. st mt ,  2,  host _b,  si zeof ( host _b) ,  &dummy) ;
      SQLBi ndCol Pol y( csr 1. st mt ,  3,  host _c,  si zeof ( host _c) ,  &dummy) ;
      csr 1. bi nd = t r ue;
    }
    sql code = SQLFet ch( csr 1. st mt ) ;
    i f  (  sql code == SQL_ERROR | |  sql code == SQL_I NVALI D_HANDLE )
      handl e_er r or ( odbcEnvi r onment ,  odbcConnect i on,  csr 1. st mt ,  sql code,
" SQLFet ch" ) ;
  }
  cat ch( . . . )
  {
  }
  r et ur n sql code;
}
/ / - - - - - - - - - - - - - - -

6



2.6 Closing the SELECT statement
Closing the cursor is the simplest step:

EXEC SQL CLOSE csr 1;

This translates to the following code for MySQL:

/ /  EXEC SQL CLOSE csr 1
st at i c i nt 16
cl ose_csr 1( )
{
  mysql _f r ee_r esul t ( csr 1. r sl t ) ;
  csr 1. r sl t  = NULL;
  csr 1. r ow  = 0;
  r et ur n SQL_SUCCESS;
}

For ODBC, we generate the following code:

/ /  EXEC SQL CLOSE csr 1
st at i c i nt 16
cl ose_csr 1( )
{
  t r y
  {
    sql code = SQLFr eeSt mt ( csr 1. st mt ,  SQL_CLOSE) ;
    i f  (  sql code == SQL_ERROR | |  sql code == SQL_I NVALI D_HANDLE )
      handl e_er r or ( odbcEnvi r onment ,  odbcConnect i on,  csr 1. st mt ,  sql code,
" SQLFr eeSt mt " ) ;
  }
  cat ch( . . . )
  {
  }
  r et ur n sql code;
}

7



2.7 Modified Code
The EXEC SQL statements are now replaced by calls to the generated functions:

i nt  mai n ( voi d)
{

host var 1 = 42;

/ *  Open t he cur sor  * /
sql code = open_csr 1( ) ;   / /  EXEC SQL OPEN csr 1;

i f  ( sql code < 0)
{

pr i nt f ( " OPEN f ar eCur sor ,
sql code = %d\ n" ,  sql code) ;

}

whi l e ( r c >= 0 && r c ! = 100)
{

sql code = f et ch_csr 1( ) ;   / /
EXEC SQL FETCH csr 1 I NTO : host _a,  : host _b,  : host _c;

pr i nt f ( " Fet ch %d,  %l f ,  %s\ n" ,
host _a,  host _b,  host _c) ;

}

sql code = cl ose_csr 1( ) ;   / /  EXEC SQL CLOSE csr 1;

r et ur n 0;
}

2.8 Insert / Update / Delete
Handling insert / update / delete statements is relatively straightforward.

The SELECT … INTO statement, which is a single-row read, is also handled as a special case.

8



3 Implementation

3.1 The awk Code
The pre-compiler is implemented in awk, we typically use GNU awk (gawk) to execute the code.
The complete code is less than 1000 lines, including comments.

The code relies extensively on regular expressions to find the embedded SQL in the program, as
well as some manipulation of the SQL statements themselves.  For example, recognizing the
ESQL macros is done with this pattern:

t oupper ( $1) ==" EXEC"  && t oupper ( $2) ==" SQL"  {
…
}

The getStatement() function simply reads through the input file until it reaches the terminating
semicolon of the SQL statement.  It understands single and double quotes inside the SQL but,
like any compiler, will get really confused by unbalanced quotes.  This function returns the entire
SQL statement as a single string.

There are a few routines for manipulating the SQL statements.  We have routines to convert the
code to a plain vanilla SQL, such as stripping out Tandem SQL/MP specific syntax.  For ODBC,
host variables are recognized and substituted by “?” .  Host variables are recognized with regular
expressions:

mat ch( sql ,  / \ : [ [ : al pha: ] ] [ [ : al num: ] _\ . ] * ( \ [ [ ^ \ ] ] * \ ] ) * / ) ;

Most of the awk code generates the required inline code for the database calls.  We also have
additional options to generate debug code.

3.2 Helper Routines
To get the C++ compiler to match the types, we simply wrap the API with inline functions.  For
MySQL, we substitute the parameters directly into the SQL statement.

i nl i ne i nt 32
SQLBi ndPar mPol y( st d: : st r i ng& st mt ,  const  char *  t ext ,
                const  i nt 32 par m,  ui nt 16 / * si ze* / )
{
  st d: : st r i ng: : si ze_t ype pos = st mt . f i nd( t ext ) ;
  i f  (  pos ! = st d: : st r i ng: : npos )
  {
    char  buf f er [ 12] ;
    snpr i nt f ( buf f er ,  12,  " %d" ,  par m) ;
    st mt . r epl ace( pos,  st r l en( t ext ) ,  buf f er ) ;
  }
  r et ur n SQL_SUCCESS;
}

9



Returned values for MySQL:

i nl i ne i nt 32
SQLBi ndCol Pol y( const  char *  val ue,  i nt 32& par m,  ui nt 16 / * si ze* / )
{
  par m = at oi ( val ue) ;
  r et ur n SQL_SUCCESS;
}

For ODBC query parameters:

i nl i ne i nt 32
SQLBi ndPar mPol y( SQLHSTMT hst mt ,  SQLUSMALLI NT col ,  const  i nt 32&
par mPt r ,  SQLI NTEGER buf Len)
{
  i nt 32 r c = SQLBi ndPar amet er ( hst mt ,  col ,  SQL_PARAM_I NPUT,  
                              SQL_C_SLONG,  SQL_I NTEGER,  buf Len,  0,
                             ( voi d* )  &par mPt r ,  buf Len,  0) ;
  i f  (  r c == SQL_ERROR | |  r c == SQL_I NVALI D_HANDLE )
    handl e_er r or ( odbcEnvi r onment ,  odbcConnect i on,
                 hst mt ,  r c,  " SQLBi ndPar amet er : i nt 32" ) ;
  r et ur n r c;
}

The downside to using polymorphism is that some older ESQL / C programs might rely on
deprecated K&R C compilers, causing problems when converted directly to C++.  In our case,
we didn’ t run into these problems and we felt it would be better to update the code if we did find
such problems.

3.3 Some More Details
The pre-compiler handled some minor SQL differences from one dialect to the next.  HP’s
NonStop SQL requires dates to be handled in a unique fashion.

The pre-compiler uses #line directives so that programmers can debug against the original source
code they wrote.  It also adds the necessary include directives for the helper routines.

As an additional touch, it attempts to follow the same indentation pattern as the original code as
the authors believe that generated code doesn’t have to be ugly or unreadable.

3.4 To-Do List

1. The current code is not particularly generic, in that we have a separate awk script for each
target database.  There is a lot of duplication between the scripts.

2. We’ve discussed rewriting it in perl, as it may get more traction in the open source
community than an awk script.

10



3. Remove / isolate some of the code that’s specific to our application.

4. A more generic pre-compiler may need some more robust pattern matching.  We prefer,
however, to avoid creating a yacc grammar as minor syntax differences between various
vendors’  proprietary ESQL pre-compilers could make our pre-compiler fragile.

4 Conclusion
The code described in this paper is used every day to compile a large production system, running
on Linux IA-64, using MySQL.  During our benchmarking efforts, we already had the pre-
compiler running for ODBC, PostgreSQL and Oracle when we came to the MySQL port.
Overall, it took 2 days to get our entire system running on MySQL, using ESQL / C.  This was
much easier than we expected.

11


